

POLLUTEC 2016

Régénérons vos sols

Des experts spécialisés dans la réhabilitation des sites pollués

Des solutions adaptées à tous types de pollution et tous secteurs d'activité

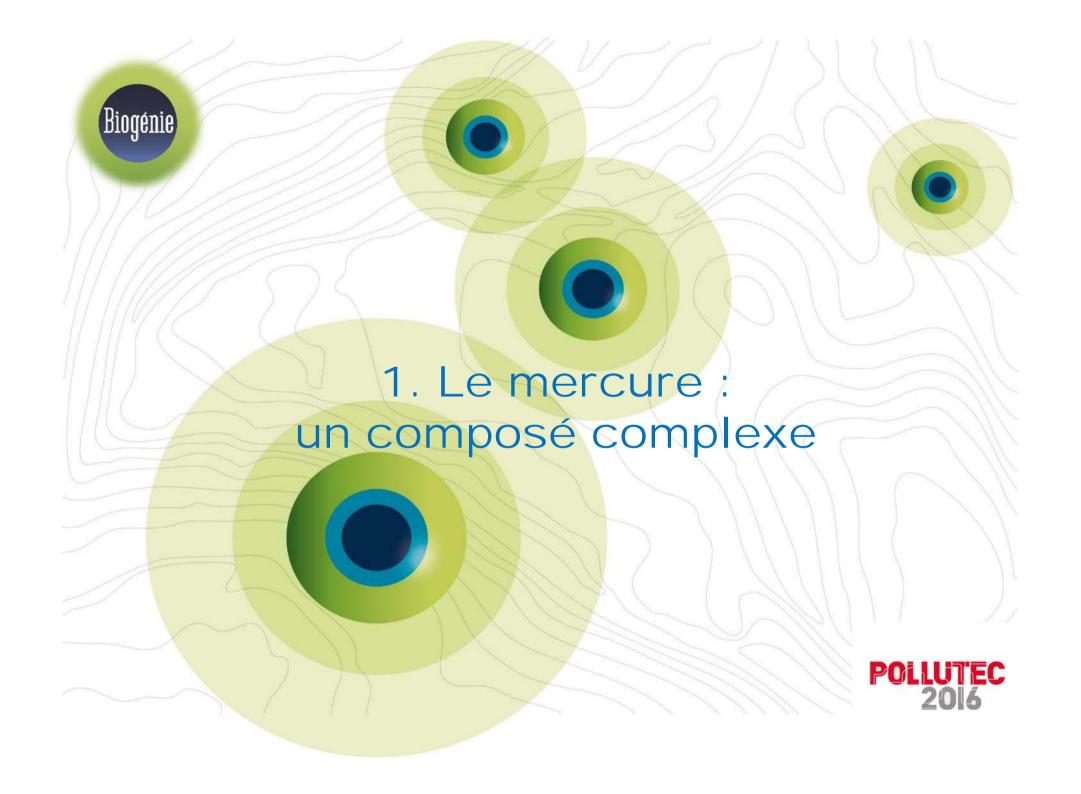
Une dépollution des sols effectuée sur site ou dans des centres spécialisés

L'innovation pour leitmotiv et la sécurité pour priorité

La gestion des composés mercuriels : retours d'expériences

Pollutec 2016 - 01/12/2016

Colin HENOT – Responsable QHSE / Julien CHIBLEUR – Responsible Travaux Jérémie LEPLAT – Responsable Technique National



Sommaire

- 1. Le mercure : un composé complexe
- 2. Approche HSE d'un chantier « mercure »
- 3. Un chantier « mercure » : la réalité du terrain
- 4. Modalités de gestion d'une pollution mercurielle dans les sols
- 5. Conclusions

Le mercure – sous toutes ses formes

Dans l'environnement, le mercure se présente sous différentes formes :

- Différentes formes chimiques :
 - Hg° ou Hg (0) = mercure élémentaire
 - Hg⁺ ou Hg (I)
 - Hg²⁺ ou Hg (II)
- Différentes formes géochimiques et degré d'oxydation et complexé :
 - Inorganique avec degrés 0, I ou II
 - Organiques avec degrés I ou II

Valence	Dénomination	Formule chimique		
0	Mercure élémentaire	Hg ⁰		
II	Ion mercurique libre	Hg ²⁺		
II	Chlorocomplexes	HgCl ⁻ , HgCl ² , HgCl ³⁻		
Ш	Hydroxocomplexes	Hg(OH) ⁻ , Hg(OH) ₂		
11	Thiocomplexes	HgSR, CH₃HgSR		
П	Monométhylmercure	CH₃HgCl		
П	Diméthylmercure	CH₃HgCl₃		
II	Sulfure de mercure	HgS		
11	Séléniure de mercure	HgSe		
Ш	Complexes fulviques et humiques	490500		

Le mercure – sous toutes ses formes

Les formes principalement rencontrées sur les sites industriels et liées à une activité anthropique sont :

	Composé	Etat physique	Solubilité µg/L	T °C	Conc° vapeur saturante mg/m³
S	Hg° mercure métal	liquide	20-60	0	2
				20	13,2
				30	29,5
				40	62,4
	HgCl2 chlorure	Solide	600-700	11	0,28
	mercurique cris	cristallisé	800-700	23	0,81
	HgS sulfure mercurique	Solide cristallisé	0,01	20	0

- → Mobile (vers eau/air) : volatil
- → Biodisponible en phase vapeur
- → Peu volatil / mobile vers eau
- → Changement de forme en milieu réducteur
- → Stable / non mobile / non volatil
- → Peu biodisponible

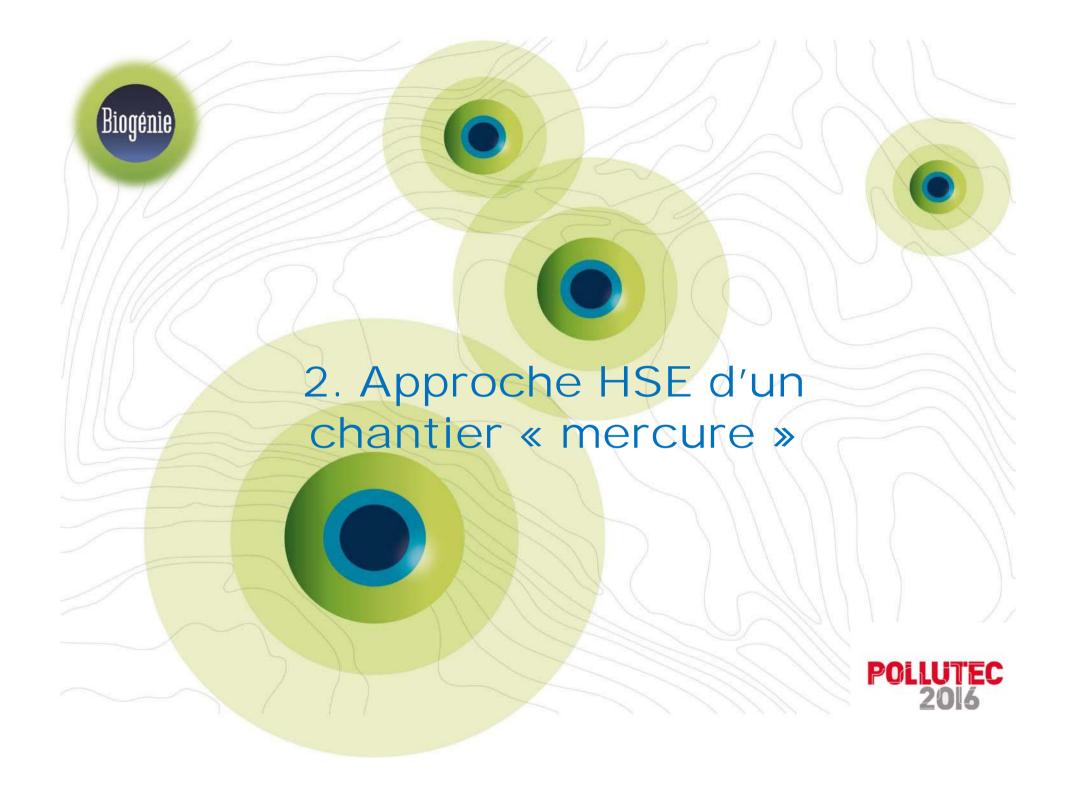
Source BRGM - Journées Techniques BRGM - 2013

Le mercure – sous toutes ses formes

En phase d'études / investigations, sont recherchés

- Mercure total sur lixiviats (critères ISDI)
- Mercure total sur brut éventuellement
- Méthyl-Mercure rarement pour identification part organique / inorganique
- → Etude historique pour aide à la décision

Cette recherche est primordiale pour appréhender :


- Risques sur site pour les travailleurs
- Risques pour usage futur

<u>Retours d'expérience</u>:

- Découverte de teneurs conséquentes dans l'air ambiant sur un site qui ne présentait qu'au premier abord que des concentrations ponctuelles significatives en Hg Total;
- Peu de laboratoires standards réalisent une spéciation ;
- Difficulté de cartographie des teneurs.

Le mercure : risques toxicologiques

Intoxication au mercure: Hydrargisme

- Toxique et écotoxique
- Cible et voies d'intoxication dépendant des composés
 - Voie respiratoire favorisée par la volatilité selon les formes

- Forme organique (méthylmercure) :

- Très toxique en cas d'ingestion
- Très toxique par inhalation
- Mutagène
- Cancérogène
- Reprotoxique : altération de la fertilité

Forme élémentaire (Hg°) :

- Toxicité en cas d'exposition chronique
- Très toxique par inhalation
- Reprotoxique : atteinte au développement du fœtus
- Absorption significative par voie cutanée

- Forme inorganique (chlorure de mercure, sulfure de mercure) :

- Très toxique en cas d'ingestion
- Corrosif
- Mutagène
- Reprotoxique : atteinte de la fertilité

Le mercure : les moyens de preventions

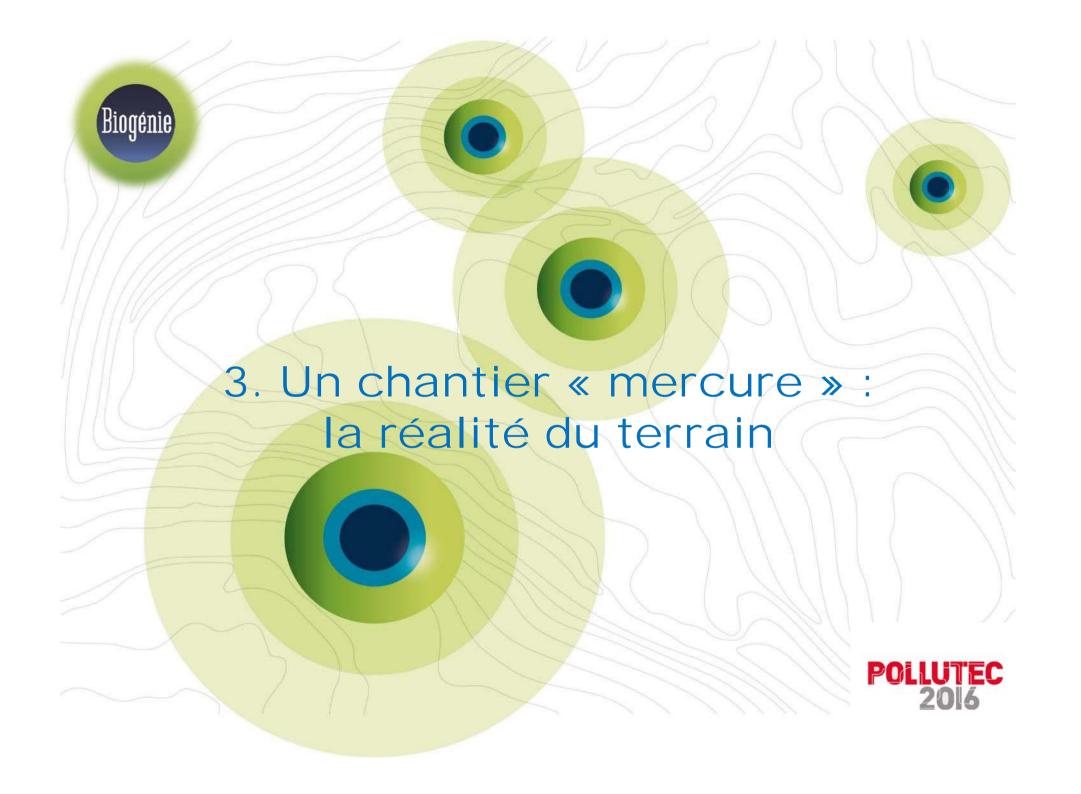
- Protection collective (environnement, voisinage)
 - Abattement des poussières
 - Barrière physique
- Protections personnelles
 - Protection respiratoire
 - Combinaisons et chaussons jetables

- Valeur limite d'exposition professionnelle
- Concentration maximale admissible (recommandation INRS ed6106)

Le mercure : les moyens de preventions

Procédures opérationnelles – Retours d'expérience

- Conditions météorologique
 - **7** T° = plus de volatilité du mercure
 - Vents = plus de dispersion de la pollution
- Zonage chantier
 - Type amiante → séparation vestiaire propre/vestiaire sale
- Gestion des déchets
 - Combinaison jetables
 - Cartouches usagées
- Gestion des eaux usées
- Procédure d'arrêt
 - Seuil d'arrêt pour exposition professionnelle
 - Seuil d'arrêt pour voisinage


Le Monitoring en phase chantier

Les outils de monitoring en fonction des fractions de mercure :

- Fraction solide (poussières)
 - Collecteur
 - Pompe de prélèvement
- Fraction gazeuse
 - Badge individuel
 - Appareil de mesure (Lumex / Jerome
- Biométrologie (dosage sanguin)
- → Sujets particulièrement sensibles à l'exposition :
 - Femmes enceintes / Enfants / Présentant des déficiences rénales

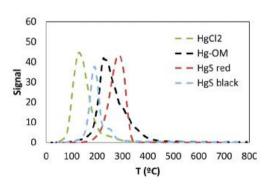
Le mercure : identification en phase étude

- → Importance d'une identification en amont des travaux :
 - Lixiviable?
 - Volatil?
- → Précaution HSE et gestion totalement différente selon la forme de Hg

D'où l'importance d'apporter une attention particulière à :

- L'étude historique : avoir connaissance de l'utilisation potentielle ;
- La méthode d'échantillonnage : réalisation de carottages sous gaines / pelle mécanique ;
- La présence de microgoutelettes (délimination verticale et horizontale)
- La réalisation de test de spéciation (Hg total, MéthylHg et Hg°), dans l'idéal

Le mercure : sa spéciation

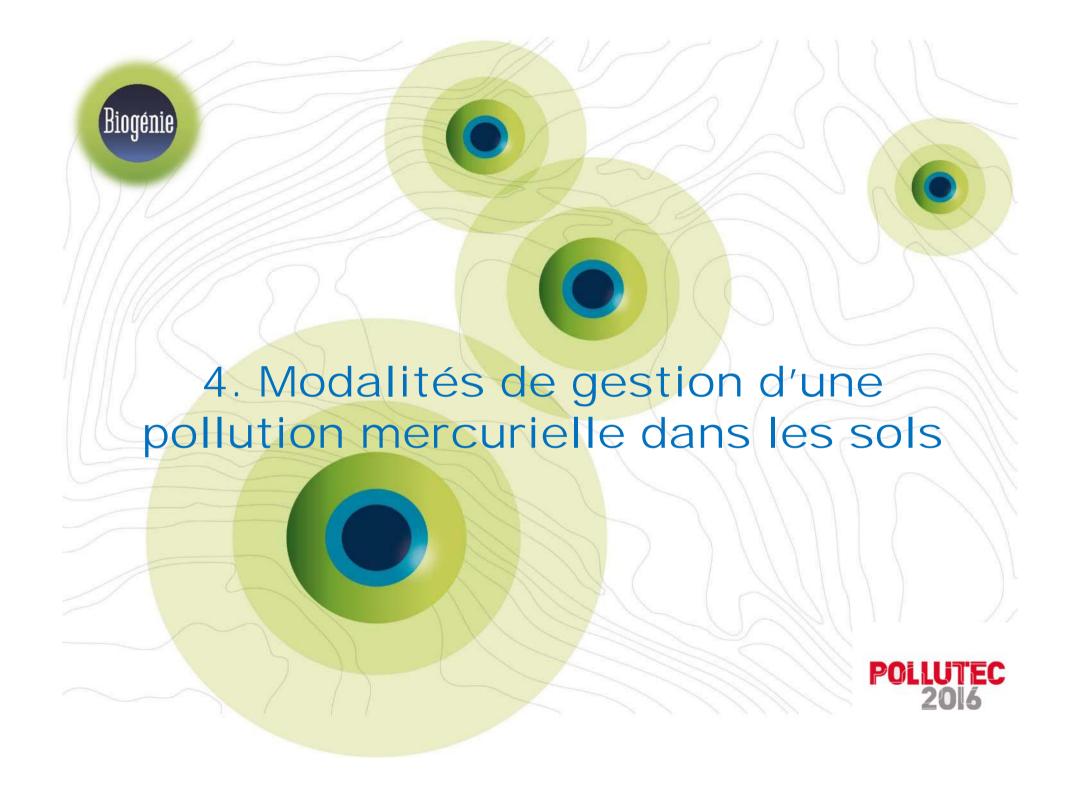

Stratégie:

- Prélèver sous gaine à la géoprobe ;
- Cibler les zones concentrées / très impactées ;
- Sélectionner des échantillons à analyser en fonction de la lithologie (*granulométrie, couleur, aspect...*).

Principe de la spéciation :

- Chauffe des échantillons ;
- Thermo-desorption / quantification au spectrometer (méthodologie Biester and Scholz 1996)

Le mercure : difficultés rencontrées


En phase chantier:

- Extensions souvent plus importantes
 - Absence d'indices organoleptiques
 - Répartition liées aux poussières
- Limiter les poussières pour éviter les contaminations croisées
- Évaluer et canaliser les forts dégazages en phase terrassement

- Découvertes de produit pur

Principales technologies de depollution des sols impactés par du mercure

Différentes technologies dépendant :

- <u>Type de mercure</u> : volatilité ou non, mobilité ou non ?
- Contexte d'intervention :
 - Objectifs de réhabilitation / sensibilité du site et de son environnement / usage futur du site
- <u>Présence de produit pur</u>:
 - Collecte / ségrégation et réduction de volume

			/ •		
_	- CIIP	CITA	/In	CITII	•
	Jui	site		SILU	

- Supprimer le risque de volatilisation
- Supprimer le risque de lixiviation
- Confiner la pollution
- Extraction

- Hors site:

- Gestion multi filière

Stabilisation / solidification

Désorption thermique

Lavage de sols

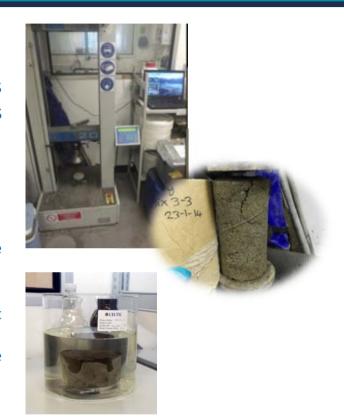
Excavation / Elimination Hors Site

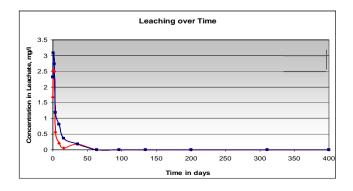
Sur-site/In-situ: la stabilisation/solidification

Définition / Objectifs :

- La stabilisation : réduire la disponibilité des contaminants en modifiant leur forme chimique : réduction solubilitgé ; par exemple la création d'un composé moins soluble, en forment des complexes stables (immobilisation chimique) cas du lait de chaux utiliser sur produit pur ;
- La solidification : créer une masse solide avec une réduction de la perméabilité associée, réduisant ainsi le risque de mobilisation des contaminants (immobilisation physique) ;
- Des essais de S/S sont nécessaires en amont par la réalisation de mélanges intimes des sols pollués, des matériaux liants (ciments) et des additifs pour produire un matériau homogène et qui se durcit. Une étude de faisabilité en laboratoire interne est réalisée afin de définir/confirmer les additifs nécessaires et les quantités (taux ratios) auxquels ils pourraient être utilisés.

Sur-site/In-situ: la stabilisation/solidification



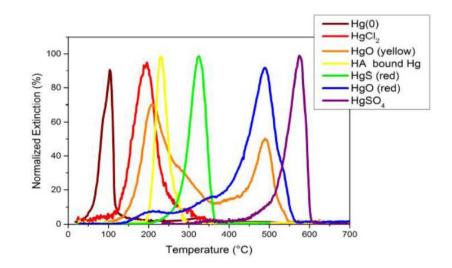

Retour d'expérience S/S Mercure:

- BIOGENIE a réalisé des essais sur des sols présentant des teneurs élevées en Hg adsorbés (jusque 2.000 mg/kg et des teneurs sur lixiviat entre 2 et 10 mg/l)
- Les essais ont été menés dans 2 objectifs :
 - Stabiliser les matériaux en vue d'un enfouissement en casier d'ISDD Stabilisé
 - Stabiliser les matériaux en vue d'une remise en remblaiement sur site dans une alvéole spécifique constituée.
 - → Les résultats de ces essais ont permis de stabiliser les matériaux physiquement assurant :
 - Stabilisation du matériau conforme aux attentes avec une bonne tenue (résistance,
 - Diminution de la lixiviation du mercure << 2 mg/l essais de type « tank tests »

Limites de la méthode :

- Contraintes liées à la réutilisation future du site
- Concentration en Hg sur brut inchangées

Sur-site/In-situ: la desorption thermique



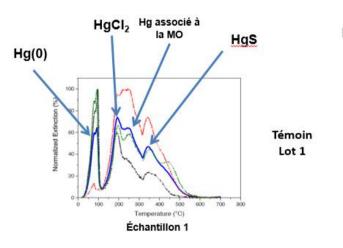
Définition / objectifs

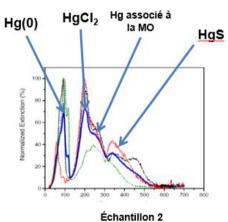
- Le traitement thermique sur site ou in situ, consiste à volatiliser les composés polluants (désorption) par un réhaussement thermique des matériaux à traiter.
- La chaleur peut être générée de différentes manières (injection de vapeur, chauffage par résistances électriques, brûleurs au gaz...) en fonction des conditions d'intervention et des températures ciblées.
- Les polluants volatilisés sont récupérés (mise en dépression) et traités sur site et/ou hors site (produits purs).
- Cette technologie est réputée et éprouvée pour la gestion de fortes concentrations (zones sources) et traitement de zones difficilement accessibles aux technologies d'extraction physiques des polluants, notamment sous bâtiments. Il s'agit également d'une solution radicale.

Objectifs:

Supprimer tout risque de présence de composés volatiles Hg° et/ou instable $HgCl_2$

Sur-site/In-situ: la desorption thermique

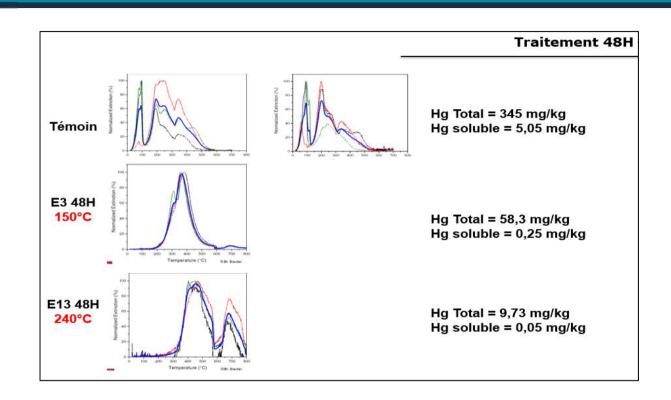



<u>Limites de la méthode :</u>

- Contraintes locales : bâtiments, réseaux etc...
- Concentrations en Hg sur brut résiduelles bien que plus de volatil

Retour d'expériences :

Essais de cinétique de désorption thermique avec analyses spéciation


T = 100 à 260 C sur 12 à 168h

Sur-site/In-situ: la desorption thermique

Résultats:

- Disparition du mercure métallique dès 150 °C;
- Disparition de la plupart des espèces (HgCl2 et Hg lié à la matière organique) dès 240 °C;
- Forme résiduelle présente au sein des échantillons : HgS (Sulfure de mercure)
 - efficacité de la désorption thermique sur les échantillons testés
 - → permet de supprimer les formes mobiles du Hg

Hors-site: les operations d'excavation

Le terrassement doit être opéré avec la plus grande rigueur : pas d'indice organoleptique excepté quand mise en évidence de phase libre.

En cas d'une fraction volatile, l'usage d'un LUMEX ou JEROME est très utile

Retour d'expérience :

La maîtrise des poussières est primordiales :

- Base vie / sas / EPI
- Lavage des camions
- Contrôle et monitoring
- Rabattage poussières

Hors-site: les operations d'excavation

La **préparation des matériaux** par criblage est envisagable si les matériaux si prêtent mais doit être faite sous contrôle et collecte des vapeurs, avec une filtration adaptée (substrat soufré).

Si criblage insuffisant : lavage de sols...

Hors-site: la gestion multi-filières

La collecte d'une phase libre

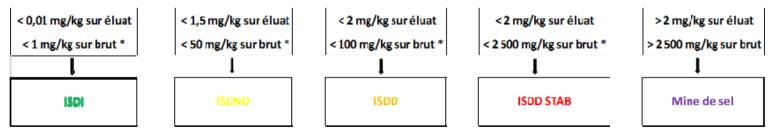
- Microgoutelletes / lentilles
 - → agglomération en « flaques »
 - → Fluide et donc difficilement extractible

Retours d'expérience

- Nécessite une méthodologie de récupération minutieuse :
 - Faible efficacité des système de pompage (pompe péristaltique)
 - Extraction par aspiration sous vide
 - Ségrégation sur plaque vibrante avec tamisage (shaker table)
 - Collecte locale « à la petite cuillère »
 - Aspiration à la seringue
- Stockage en contenants spécifiques : flacons ou bonbonne adaptés

<u>Chantier REX</u>: Collecte et valorisation de 230 kg de Hg liquide Soit environ 20 litres $(d=13,5 \text{ g/cm}^3)$

Hors-site : la gestion multi-filières



L'orientation multifilière est directement dépendante des concentrations sur brut ET sur lixiviat des teneurs en mercure mesurées.

Gestion des sols avec teneurs adsorbées :

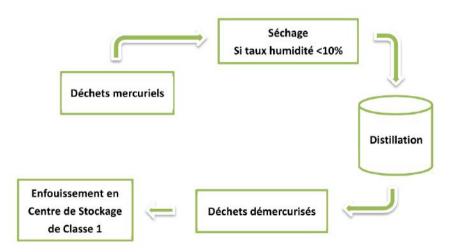
Les critères d'acceptation dépendent directement des arrêtés préfectoraux des centres, des anciennes valeurs guides (FNADE) et des capacités de gestion des matériaux.

<u>Clé de répartition « type » pour mercure adsorbé :</u>

(*) Valeurs dépendant des critères d'acceptation des centres concernés

<u>REX</u>: dans certains centres, comme les mines de sels, un refus peut intervenir pour une raison annexe, sensible pour l'installation : humidité/champignon

Hors-site : la gestion multi-filières


Gestion des produits purs:

Les produits purs, une fois collectés doivent être conditionnés dans des flaconnages adaptés en verre ou métallique mais spécifique.

Dès lors que le mercure est visible (gouttelettes, flaques,...), celui-ci doit faire l'objet d'une gestion spécifique vers une filière de recyclage. Nettoyé et purifié ce dernier est ensuite revendu.

- Mercure Liquide : VALORISATION
- Déchets Démercurisés : ENFOUISSEMENT en ISDD

Hors-site : la problématique transport

Transport France - ADR

Les terres (ou produits) présentant des teneurs en mercure significatives et relevant d'un enfouissement (ISDD Stab/mine de sel) doivent être transportés en semi remorque sous la réglementation ADR.

Le conditionnement de ces matériaux peut être également être réalisé en big-bag adaptés ou mis en fût.

Retour d'expérience

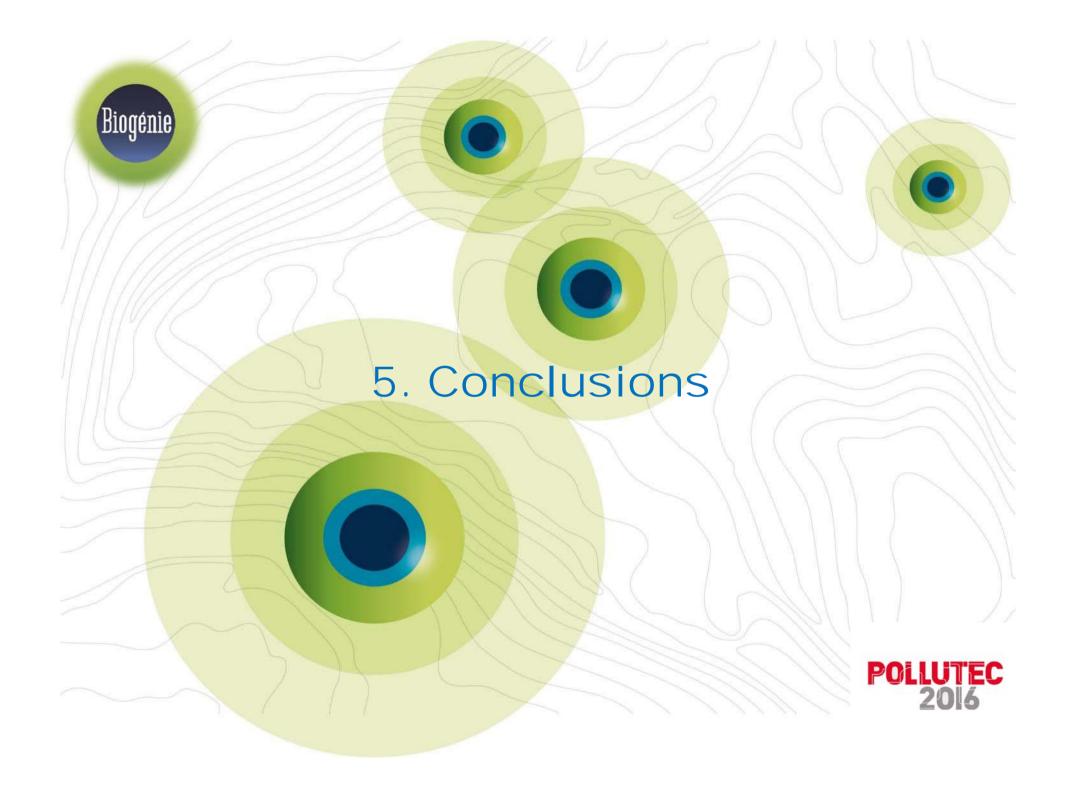
Contenants UN refusé (défaut de certificat) bien que commande auprès d'un fournisseur principal.

Hors-site : la problématique transport

Transport ADR – Mine de sel

En raison du caractère spécifique du stockage le conditionnement pour mine de sel :

- Pas de produit pur
- Absence de dégazage depuis le fût (contrôle) : ajout CA soufré
- Transport transfrontalier, assurances et cautions...


REX:

L'utilisation de charbon actif soufré + humidité + fût en acier : corrosion liée à la génération de d'acide sulfurique : adaptation de la mise en fût nécessaire.

BIOGENIE a évacué plus de 1.000 fûts de terres fortement impactés (> 2.000 mg/kg Hg).

Conclusions

Le mercure : un composé connu de tous mais qui reste mal connu ou mal abordé : études, approches, spéciation...

- La gestion d'un chantier avec contamination mercure :
 - → Précautions et préparation
 - → Capacité d'adaptation
 - → Monitoring et haut niveau d'exigence QHSE
 - → Management / gestion de déchets

BIOGENIE EUROPE

SOLutions IDF Sud Chemin de Braseux 91540 ECHARCON – BP 69 Tél: +33.1.64.56.78.00. SOLutions IDF Nord
Port de Bruyères-sur-Oise
Chemin du Jacloret
95820 Bruyères-sur-Oise
Tél: +33. 1.34.70.64.60.

SOLutions Rhône-Alpes 355 en Belle Lièvre - RD 77 01500 CHATEAU-GAILLARD Tél: +33.4.74.46.35.80.

www.lne.fr

http://www.biogenie-europe.fr/

